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ABSTRACT 
Mine ventilation models are now an accepted component of most mine management systems. However, 
modern ventilation models also represent a highly structured spatial data source, defining underground 
pathways and connections across a mine. This creates opportunities to extend the use of network models 
beyond ventilation design, by using critical path algorithms to find pathways such as minimum distance or 
minimum time. 

This paper explores the use of ventilation network models to automatically analyse and calculate potential 
emergency escape routes. A variation of Dijkstra’s algorithm is used to predict complex pathways between 
any two points across a model, representing an escape route from an emergency area (such as a fire) to a 
safe location (such as the surface or a refuge station). Weighting can be assigned to paths to represent 
potential travel speed, obstructions or preferred routes. Finally, emergency considerations such as smoke or 
gas in some parts of the mine can then incorporated into the pathways to force the algorithm to avoid 
dangerous routes and specify safer pathways. Ventsim is used to visually show example results. 

Emergency egress pathway prediction using ventilation network models can provide an efficient way to 
quickly predict the quickest or most efficient escape routes for emergencies or planning purposes. 

Keywords: Emergency egress, ventilation models, Ventsim  

INTRODUCTION 
In China, around 86,000 deaths in coal mining accidents between 1991 and 2001 occurred (Yan and Feng, 
2013), many related to fire and entrapment of miners. Mine fires and explosions impact on the effectiveness 
of established escape routes, when smoke, gas, visibility and physical restriction impact access to normal 
pathways, and alternative pathways may be difficult to quickly analyse and review in an emergency. 

Mine ventilation flow and pressure modelling typically uses a process called ‘network analysis’ to solve 
airflow and pressure through complex interconnected pathways. Although originally described as an 
algorithm to be used for hand calculation, Professor Hardy Cross’s seminal paper in 1936 “Analysis of flow in 
networks of conduits or conductors” (Cross, 1936) paved a path forward to implement digital computers to 
solve complex network problems. 
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The name network analysis is derived from the study of interconnected nature of nodes (junctions) and 
branches (airways) that represent a mine ventilation system. Initial studies by Hardy Cross focused on the 
flow of water and the resulting pressure changes from resistances within the circuits. As computers became 
available in the 1950’s and grew more powerful in the following decades (Tien, 1997), analysis was 
broadened to include flow of airflow, heat and humidity, gases, natural ventilation changes and other more 
exotic features such as Radon decay and diesel fumes (McPherson, 1986). 

More recently, the rapid escalation in the use of remote sensor technology has resulted in the ability for real 
time information about heat and gases to be fed directly into a network model for distribution and prediction 
in downstream areas.(Stewart, Aminossadati and Kizil, 2015). Network models therefore have most of the 
essential environmental information required to assist in mine emergency planning and escape route 
analysis.  

Graph Theory in Ventilation Networks 
Modern mine ventilation models are generally created using a strict mathematical configuration of defined 
airways and junctions. This can be represented and analysed by a field of mathematics called ‘graph theory’. 
Graphs are mathematical structures used to model relations between vertices or nodes, connected by 
edges, arcs or lines. The concept was introduced by Euler in 1736 (Alexanderson, 2006) who created a 
formula relating the number of edges, vertices and faces of a convex polyhedron. Many of the techniques for 
solving the distribution and flow or air and pressure in a model require the application of graph mathematics 
such as the formation of minimum resistance loops by spanning trees used in the Hardy Cross analysis. 

A commonly used application of graph theory is Dijkstra’s algorithm (Dijkstra, 1959). Dijkstra demonstrated a 
method of finding the shortest path between nodes or vertices in a graph structure. Variations of this 
algorithm are used in many types of modern problems such as finding the quickest route on navigation 
device maps. The original Dijkstra algorithm has been improved using Fibonacci heap priority queues 
(Fredman and Tarjan, 1987) to ensure searches are prioritised in the quickest directions, and a variation 
called the ‘A*’ algorithm, which uses heuristics to direct the graph search towards a destination (Hart, Nilsson 
and Raphael, 1972). 

In mining applications, variations of Dijkstra’s algorithm have been used to predict shortest haul path routes 
(Choi and Nieto, 2011), robotic entry into mines (Shuai, 2008), and planning communications layouts with 
minimum cabling (Pei et al, 2009). In recent times, the poor record of safety in Chinese mines has prompted 
studies using Dijkstra’s and other algorithms to calculate escape paths and avoidance routes in coal mines 
(Yan and Feng, 2013). 

Previous studies have mainly focused on using specially built networks to describe and model the graphs 
required for an effective shortest path algorithm, a cumbersome process that requires continual updating to 
ensure currency. As computers and software have become more powerful, modern mine ventilation networks 
created by engineers are now typically highly detailed and frequently updated, laying out nearly every 
pathway within a mine plan. Ventilation modelling software arranges these pathways into a network, which 
can be made to conform to the definition of a graph as described in graph theory. This allows algorithms 
such as Dijkstra’s to be adapted for finding paths in ventilation models with only some simple modifications. 

Dijkstra’s algorithm searches for optimum path ways within a system by an iterative method that expansively 
searches for the shortest travel distance from the starting location to each adjacent node. As each new 
adjacent node is encountered, the combined previous node distance plus the edge distance to the new node 
is assigned to the new node. The algorithm keeps searching outwards until the target node is reached, and 
non-minimum nodes distances are removed. The resulting minimised assigned nodes distances can then be 
used to define a path of edges to the destination node.  

Yan and Feng (2013) proposed using an alternative ‘ant algorithm’ citing the inability of the Dijkstra algorithm 
to produce rapid results with flexibility and alternative route prediction, however these concerns are largely 
resolved in this study by using sequential path refactoring, and implementing high speed optimisations such 
as minimum priority queues and heuristic directional optimisation to create the necessary speed to analyse 
large ventilation models very quickly. 

Least path selection in Ventilation Networks 
Dijkstra’s algorithm works on the concept of ‘weight’ or distance being assigned to an edge or pathway 
between two vertices within a graph. The weight can be (for example) the length, travel time or perhaps 
resistance of a pathway, and the algorithm will find the path with the lowest possible summation of weights. 
For example, minimum resistance pathways can be used to show the presence of an unrestricted airway 
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between two points, or can be used for example to define a minimum resistance mesh loop around a high 
resistance airway. 

Another use proposed by this paper is to analyse emergency escape routes in a mine system, either to a 
surface exit, or to a safe location such as a refuge station within a mine. While a good mine emergency plan 
may typically have escape routes well planned and usually signposted in advance, situations may occur in 
an emergency which may limit access through these pre-planned escape ways. Some examples of 
unexpected variations may include; 

• Mine fires or explosions where some escape ways or parts thereof may be inundated with fire or 
poisonous gases. 

• Blockage of an escape way through mine collapse or flooding. 

• Some parts of a mine may not have planned or established fully escape ways into all regions of the 
mine. 

In large complex modern mines, there may be many alternative escape path options available even if not 
planned. Access to a quick, reliable and safe escape route is a critical factor in any mine emergency, both for 
potential victims of the emergency, as well as emergency services who may be required to access the 
emergency area. If regular routes become unavailable or unreliable, analysing alternative routes manually is 
time consuming and potentially inaccurate in terms of optimum distance and travel time and therefore an 
automated least path algorithm may offer significant advantages. 

PRACTICAL APPLICATION TO VENTILATION MODELS 
To adapt Dijkstra’s algorithm to this problem, the ventilation model must be converted to a graph, and 
consideration must be given as to how to weight the edges or pathways within a ventilation model to ensure 
the safest and fastest pathway solutions are offered. Ventilation models are normally defined by an array or 
matrix of either connected nodes and airways and can be transformed into connected graph structures with 
little effort.  

The weighting of the connections between nodes (called ‘edges’ in graphs) needs be estimated. Relevant 
considerations for graph weighting include 

• The speed and safety of escaping personnel include the walking slope or angle of the pathway 

• Can the path can be driven, walked or climbed (with a ladderway)?  

• The presence of blockages or non-thoroughfare controls like inaccessible regulators or walls 

• The presence of smoke, gas, fire or impassable water within a pathway.  

• What about if the roadway is intake or return? 

• The presence of mask stations or rescue chambers in those roadways?  

The weighting of potential pathways should be such that undesirable paths such as gas or smoke filled 
tunnels are not considered, or are considered as a last resort. It should be noted that the weighting of 
pathways, particularly from smoke and gas is highly subjective and little data or scientific information is 
available to recommend factors. In general travel way through smoke is highly discouraged in emergency 
response. Thus, the recommended weightings suggested below should be critically assessed and changed if 
considered necessary. 

Pre-conditioned Weights 
The pre-conditioned weight is the time taken to travel a path between each node and is based on the 
physical state of pathways. It considers the accessibility or otherwise of tunnel and ventilation controls and 
inaccessible paths must be flagged if no pedestrian or vehicle access can be permitted. For this study, only 
pedestrian walking and climbing speeds were considered for analysis. Yan and Feng (2013) also considered 
other factors in escape paths such as wind resistance and crowding factors however for modern mines these 
are considered relatively insignificant. 

Parameters such as the effect of slope can be weighted by the application of simple rules such as Naismith’s 
rule (Rees, 2004) , a mountaineer who in 1892 suggested that walking a route will take one (1) hour for 
every five kilometres forward plus one (1) hour for every 600m ascension. Brake (1999a) suggested a flat 
ground walking pace of around 4.5 km/h while considered a 40% factor for walking up ramps (2.9 km/h), 
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which is considerably faster up ramps than Naismith’s rule, but may reflect the urgency of an escape 
situation. Rees (2004) suggested a more sophisticated model based on metabolic cost can also be used.  

A compromise based on Naismith’s method is suggested based on a horizontal walking pace of 4.5 km/h 
with an inclined penalty of an extra hour travel per 1000 m vertical distance. Due to reduced visibility a 
further walking speed penalty of 40% is recommended (Brake, 1999b) for travelling in adverse conditions 
such as smoke or gas. Using Equation 1 a 1:8 inclined ramp (for example), this calculates to around 2.9 
km/h. 

Travel Speed =TD/(TD/4.5+H) (1-E)  km/h        (1) 

Travel Time =(Travel Speed)/L  hours       (2) 

 
Where  TD  = Total Distance (km) 

L  = Length Pathway (km) 
H  = Vertical Height (km) up only  
E  = Environmental Penalty Factor, 0% = Clear, 40% = Smoke 

 

Ladderways often form alternative escape ways within a mine, but usually at a heavy travel time and 
metabolic cost due to physical exertions, confined space and limited access space for multiple personnel. An 
estimate of travel time up a ladderway for an average fitness person in the authors mine rescue experience 
is approximately 300 m – 400 m vertically per hour, including rests. In fact, Brake suggested that modern 
mine workers may struggle to travel even this distance due to sedentary job roles and limited fitness (Brake, 
1999a). For the study assumptions, a vertical climbing speed of 350 m/h was assumed. 

Post-conditioned Weight Factors 
Post-conditioned factors do not affect travel speed, but are additional multiplied weighted factors applied to 
the graph to force it to consider alternative paths. Factors include smoke spread and dangerous gases from 
fires or explosions, and blocking of tunnels due to tunnel fire, collapse or flooding.  

These factors can be introduced into a ventilation model in several ways: 

1. Manual entry of data directly into the ventilation model airway parameters. 

2. Simulated entry of data, such as using the results of a fire simulation at a particular time to condition 
the weight of an airway with fire products like carbon monoxide and smoke. 

3. Providing real time sensor data into a transient simulation to condition the mine tunnels with real 
data, both at the sensor location, and downstream from the sensors into the simulated zones. 

The use of the above techniques (particularly options 2 and 3) provide a powerful method of applying the 
best possible data to the selection of potential escape paths. This paper will focus on perhaps the two most 
important factors for fire emergencies; Carbon Monoxide (CO) gas, and smoke effecting visibility.  

Weighting of CO should consider the Total Weighted Average (TWA) and Short Term Exposure Level 
(STEL) levels of CO to dictate the safe accessibility of an escape way. NIOSH (1988) guidelines suggest an 
8-hour TWA of 35 ppm and a STEL of 200 ppm. Safework Australia (2012) recommends a TWA of 30ppm 
with STEL listed in Table 1. 

A weighting factor for pathways with CO can be considered by applying a progressive factor starting at the 
TWA value, and increasing to the maximum STEL of 400 ppm. For levels above the peak STEL, a much 
higher weighting factor should be applied to discourage consideration of these paths (which could normally 
only be safely traversed using self-rescuers or breathing apparatus). Proposed weighting of gas factors is 
shown in Table 2.  

An alternative weighting factor due to smoke is based on an assumed visibility range calculated from opacity 
derived from smoke soot particle assumptions (a product of fire) (Kang, 2007). Kang suggests that visibility 
of more than thirty metres is required if signage is to be able to be read without hindrance and higher smoke 
levels may progressively hinder progress and travel speed. In addition, entry into smoke is discouraged by 
most mine emergency plan guidelines, and therefore any level of smoke needs to be heavily factored to 
discourage path selection through these zones. In this study, smoke visibility below 25 m is factored as 
shown in Table 2. 
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Post-conditioned factors are applied as multipliers to the pre-conditioned weights. Thus, a post-condition 
factor of ten (10) for example would increase the graph weighted travel time of an airway to ten times the 
original travel time, thereby discouraging Dijkstra’s algorithm from selecting this path, at least until other 
pathways were considered. 

Multiple Pathway Options 
A weakness of Dijkstra’s algorithm is that it chooses only one path. To encourage the algorithm to consider 
alternative paths, the Graph must be re-weighted each iteration, with existing pathways applied with a further 
weighting factor representing a previously travelled path. This forces the algorithm to avoid previous paths 
(unless no other option is available) and thus progressively choose less optimum paths for consideration. To 
prevent trivial changes of pathways, a ‘new’ path is recommended to have at least a 10% variation on 
previous paths to be considered as a new option. 

Combining with Dynamic Models 
Dynamic or transient simulation in ventilation models has demonstrated significant benefits in predicting the 
spread of fire contaminants (Greuer, Chang and Laage, 1995) (Brake, 2013) or gas information from real 
time sensors (Stewart, Aminossadati and Kizil, 2015). Dynamic modelling allows the simulation to spread 
contaminants and alter ventilation behaviour over time, thus creating a more realistic likely spread of gases 
and smoke. When combined with the proposed Dijkstra’s algorithm approach, this information provides a 
powerful tool to analyse safe pathways to escape or refuge locations at any time during the emergency. 
Indeed, safe pathways early in the emergency may change and become unsafe later, and the use of 
dynamic simulation data will allow this change to be predicted by running the escape path algorithms at 
different times. 

Example – Escape Path to Safe Locations 

A portion of a bord and pillar coal ventilation design is presented in Figure 2 to demonstrate the behaviour of 
the algorithm in the presence of existing pathways with smoke or gas. Many mines which utilise refuge 
stations locate them within a defined maximum distance from working areas, typically within 700 m (Brake, 
1999a) or at a distance defined by the likely time and range of a miner wearing a self-rescuer. 

A safe location could be defined as the presence of a refuge bay, a surface exit or a location with guaranteed 
fresh air such as the base of an intake ventilation shaft. Under normal and clear conditions, the algorithm 
would normally select the shortest / quickest pathway to the nearest safe location (Refuge Bay 2 as shown in 
Figure 2), however the presence of a simulated fire in this example inundates some of the pathways with 
gas and smoke to this location. 

The algorithm avoids smoke filled pathways to find the next closest refuge bay in a clear location. Note that 
because fire simulation or real-time sensor modelling distributes gases progressively through the model, the 
algorithm may produce different results at different times.  

The algorithm can target single or multiple destinations and both methods were trialled. The multiple 
destination option tended to limit potentially viable pathways to more distant safe locations, as the pathways 
to them were often weighted from previous visits to closer locations. Therefore, the best results were gained 
using a sequential method that considered only one destination at a time, and the pathway results of each 
destination added to a common list and sorted by best and safest travel time. 

Example – Escape Pathways Connected to the Surface 

A sample ventilation model was chosen, representing a sublevel stope design with decline access, and a 
mock truck fire was assumed in the mine. The algorithm was incorporated into Ventsim to utilise the fire 
simulation features to generate gas regions, and then graphically show the pathway options to the surface. 

A truck fire was assumed in the lower half of the mine, and trapped persons were assumed below the fire in 
the ramp. Carbon Monoxide is shown as a coloured concentration in the lower ramp. The ventilation system 
directs smoke and gas downstream of the ramp from the fire, subjecting personnel to potentially life 
threatening conditions. Using the algorithm, pathways to the surface were analysed using both decline 
ramps and escape ladderways, and the algorithm calculated around 15 pathway options, ranked in order of 
quickest time and least hazard. 

Two escape pathways were graphically selected (highlighted in WHITE) and shown in Figure 3. The left 
figure shows the preferred pathway in terms of minimum travel time and least exposure to smoke. Essentially 
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the route chosen is up an escape ladderway to near the surface, and then on to the main ramp for the 
remaining distance, a total walking / climbing travel time of about two (2) hours.  

However, because of concerns about the ability for personnel to climb 800 m of ladderway, a second option 
was highlighted by the user which minimises most of the ladderways, only using them to skirt the fire and 
smoke region of the ramp. This highlights the flexibility of the Dijkstra algorithm to choose multiple potential 
pathways.  

The list shown in Table 3 summarises each of the potential pathways, listing not only estimated travel time, 
but also the time exposed to CO (as a TWA 8-hour exposure level, and time spent above TWA and STEL 
limits). This provides valuable feedback to rescuers on both the potential and risk to personnel utilising these 
pathways, as well as the potential exposure to mine rescue personnel should they enter the mine and try to 
travel to the location.  

A discussion is warranted on whether any entry into smoke or gas should be considered; however, in this 
example the trapped miner’s location was already in smoke and there was no choice. Brake (1999) for 
example suggests that travel through smoke, while not desirable, should be considered when taken in 
context of the early potentially lower toxicity conditions of the fire, and the more serious later outcomes which 
may be present if the personnel wait for rescue. 

CONCLUSIONS 
This paper presents a further use for ventilation models beyond simply modelling ventilation conditions. 
Modern, detailed ventilation networks offer the potential to use this structured data for emergency response 
planning and action purposes. The Dykstra algorithm when applied to graphs generated by ventilation 
models efficiently predicts a variety of potential optimum pathways which, where possible can be made to 
avoid dangerous conditions while providing the quickest pathway of egress from the mine.  

When a ventilation model is coupled with live sensor readings or simulated fire results which can be 
modelled with gases or smoke, it offers a powerful tool to assist in Mine Emergency Response decision 
making during an actual or planned fire exercise. The result of the modelling can then be used to assist both 
extraction of trapped personnel, or to send mine rescue resources to the required locations, with the 
assurance that travel time and risk can be minimised. 

Further testing and optimisation of the technique is required, particularly regarding the weighting of pathways 
in the model to encourage the algorithm to avoid hazardous conditions. As with all simulation tools, the 
results are only as good as the quality of the model and assumptions, therefore caution should be observed 
when considering any results. Tools such as the method proposed in this paper cannot replace planning and 
preparation for emergencies. All mines should undertake emergency preparedness reviews and develop 
procedures for emergency situations, providing signage and training to personnel on regular escape routes. 

REFERENCES 
Alexanderson, G, 2006. About the cover: Euler and Königsberg’s Bridges: A historical view, Bulletin of the 
american mathematical society, 43(4):567-573. 
 
Brake, D, 2013. Fire Modelling in Underground Mines using Ventsim Visual VentFIRE Software. 
 
Brake, R, 1999a. Entrapment and Escape from Metal Mines: A Case Study, Qld Mining Ind Occ Health and 
Safety Conf. Yeppoon, Qld Mining Council:136-146. 
 
Brake, R, 1999b. An integrated strategy for emergency egress from an underground metal mine. 
 
Choi, Y and Nieto, A, 2011. Optimal haulage routing of off-road dump trucks in construction and mining sites 
using Google Earth and a modified least-cost path algorithm, Automation in Construction, 20(7):982-997. 
 
Cross, H, 1936. Analysis of flow in networks of conduits or conductors, University of Illinois. Engineering 
Experiment Station. Bulletin; no. 286. 
 
Dijkstra, E W, 1959. A note on two problems in connexion with graphs, Numerische mathematik, 1(1):269-
271. 
 



 

7 

Fredman, M L and Tarjan, R E, 1987. Fibonacci heaps and their uses in improved network optimization 
algorithms, Journal of the ACM (JACM), 34(3):596-615. 
 
Greuer, R E, Chang, X and Laage, L, 1995. MFIRE Users Manual Version 2.20, Bureau of Mines, Pittsburgh, 
PA (USA). 
 
Hart, P E, Nilsson, N J and Raphael, B, 1972. Correction to a formal basis for the heuristic determination of 
minimum cost paths, ACM SIGART Bulletin, (37):28-29. 
 
Kang, K, 2007. A smoke model and its application for smoke management in an underground mass transit 
station, Fire safety journal, 42(3):218-231. 
 
McPherson, M J, 1986. The analysis and simulation of heat flow into underground airways, International 
Journal of Mining and Geological Engineering, 4(3):165-195. 
 
NIOSH, 1988. CAS: 630-08-0  Carbon Monoxide. 
 
Pei, Z, Deng, Z, Xu, S and Xu, X, 2009. Anchor-free localization method for mobile targets in coal mine 
wireless sensor networks, Sensors, 9(4):2836-2850. 
 
Rees, W, 2004. Least-cost paths in mountainous terrain, Computers & Geosciences, 30(3):203-209. 
 
Safework_Australia, 2012. Guidance on the Interpretation of Workplace Exposure Standards for Airborne 
Contaminants. 
 
Shuai, W, 2008. Path Planning of Mobile Robot Based on Advanced A* Algorithm under Coal Mine [J], Coal 
Mine Machinery, 11:032. 
 
Stewart, C M, Aminossadati, S M and Kizil, M S, 2015. Use of Live Sensor Data in Transient Simulations of 
Mine Ventilation Models, International Conference on Fiber-Optic and Photonic Sensors for Industrial and 
Safety Applications:10. 
 
Tien, J C, 1997. Computer Simulation, Ventilation Course Notes MST(Chapter 12):215-243. 
 
Yan, G and Feng, D, 2013. Escape-route planning of underground coal mine based on improved ant 
algorithm, Mathematical Problems in Engineering, 2013. 
 

TABLES AND FIGURES 
 

 

Figure 1: Example of Dijkstra Optimum Path Search 
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Figure 2: Recommended escape path to safe Refuge 3 (green dash line) 
avoiding fire combustion gases (shaded area) 

 

 

Figure 3 Examples of Escapeway Routes (left) showing ladderway option and (right) showing ramp 
escape route (Ventsim Software) 
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Table 1: Short Term Exposure Levels Carbon Monoxide (Worksafe Australia, 2012) 

Total Exposure Time Allowable Concentration 

15 minutes 200 ppm 

30 minutes 100 ppm 

60 minutes 60 ppm 

Peak exposure limit 400 ppm 

 

 

Table 2:  Weighting of environmental factors 

Smoke Visibility Carbon Monoxide Graph Weighting Factor 

>= 25 m <35 ppm 1 X 

>= 10 m and < 25 m >35 ppm and <=200 ppm 2 X 

>= 1 m and < 10 m >200 ppm and <=400 ppm 10 X 

< 1 m > 400 ppm 100 X 

 

 

Table 3: Summary of escape pathway options (pathways increasingly affected by gas shown in 
colour) 
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